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Pressure-impulse theory for liquid impact problems 
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A mathematical model is presented for the high pressures and sudden velocity changes 
which may occur in the impact between a region of incompressible liquid and either a 
solid surface or a second liquid region. The theory rests upon the well-known idea of 
pressure impulse, for the sudden initiation of fluid motion in incompressible fluids. We 
consider the impulsive pressure field which occurs when a moving fluid region collides 
with a fixed target, such as when an ocean wave strikes a sea wall. The boundary 
conditions are given for modelling liquid-solid and liquid-liquid impact problems. For 
a given fluid domain, and a given velocity field just before impact, the theory gives 
information on the peak pressure distribution, and the velocity after impact. Solutions 
for problems in simple domains are presented, which give insight into the peak 
pressures exerted by a wave breaking against a sea wall, and a wave impacting in a 
confined space. An example of liquid-liquid impact is also examined. Results of 
particular interest include a relative insensitivity to the shape of the incident wave, and 
an increased pressure impulse when impact occurs in a confined space. The theory 
predicts that energy is lost from the bulk fluid motion and we suggest that this energy 
can be transferred to a thin jet of liquid which is projected away from the impact 
region. 

1. Introduction 
When a moving body of liquid strikes a target such as a rigid surface or another body 

of liquid, large and short-lived pressures are generated. The work described here was 
motivated by study of the impact of water waves against vertical walls, a frequent 
occurrence where coastal structures face the open sea. This application dominates our 
discussion so we clarify some terminology. Coastal engineers refer to ‘shock pressures’ 
when describing the large brief pressures of wave impact, but there is no decisive 
evidence that water wave impact is associated with shock waves of compression in the 
fluid. So instead we use ‘impact pressure’ as the generic term. Further, ‘hydrostatic 
pressure’ is used as usual to denote the quantity p g Y  where Y is the instantaneous 
depth below the free surface. The pressure pgH, where H is the height of the top of the 
wave above the bed, is a convenient hydrostatic reference pressure. The ‘impact zone’ 
is that part of a surface which is struck by the moving fluid. The term ‘peak pressure’ 
means the greatest pressure recorded at a given position as a function of time during 
impact. 

There is a long history of observations on the movement of rocks and structures by 
coastal waves (e.g. see Stevenson 1886), and of experiments to measure the pressures 
induced by waves breaking against vertical walls at normal incidence. Reliable pressure 
recordings were first achieved with electrical recording equipment by de Rouville, 
Besson & Petry (1938) and Bagnold (1939). They and succeeding experimenters, such 
t Present address: School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK. 
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as Denny (1 95 l), Nagai (1 960), Richert (1 968) and Kirkgoz (1 982) report a wide scatter 
(If: 50 %) in their measurements of peak pressure at the wall. More recently probability 
distributions of impact pressures have been reported by Furhboter (1986), Witte (1988) 
and Kirkgoz (1991) from nominally periodic waves. We are here concerned with the 
most extreme pressures generated by breaking waves. 

The size and duration of water-wave impact pressure are relatively well documented. 
Blackmore & Hewson (1984) report and review field measurements of sea wave impact 
pressures. For a wave with a height of about 1 m the maximum peak pressure can be 
as great as lo5 N m-2 (10 tonnes force m-2 % 10 m head of water). The pressure rises 
and falls in a time of the order 1 ms. Figure 1 is a sketch of a typical record of pressure 
as a function of time, at a point on the wall. In careful experiments laboratory waves 
produce impact pressures (relative to hydrostatic) which are much greater than those 
found in the field. Bagnold (1939), using 30 cm high waves, reported impact pressures 
thirty times the hydrostatic pressure. 

There have been several theories of wave impact pressure. Bagnold (1939) proposes 
a model involving the compression of air between the vertical breaking wave face and 
the wall. Weggel & Maxwell (1970), and Partenscky & Tounsi (1989) model impact 
pressures by solving the wave equation in a compressible fluid with pressure sources at 
the wall. Among coastal engineers the work of Goda (1985) is often used in design. 

The impact of other liquid bodies such as drops of water has had more attention. 
Many of these studies have been for high-speed impact in which significant shock 
waves are generated and which play a dominant role in the flow for much of the initial 
stages of impact. For example see the analytic studies of Lesser (1981), and Korobkin 
(1992, 1994a,b) and the experimental observations of Lesser & Field (1983). The 
impact of an incompressible droplet on to a rigid plane was studied analytically by 
Savic & Boult (1957) and numerically by Hwang & Hammitt (1977). In addition there 
has been a sequence of papers on the self-similar flows generated by a fluid wedge 
meeting a rigid plane: see Cumberbatch (1960) and Johnstone & Mackie (1973). The 
water entry of a solid wedge into liquid can also be modelled by a self-similar flow: see 
Cointe (1989) and Howison, Ockenden & Wilson (1991). The water-entry problem is 
reviewed by Korobkin & Pukhnachov (1988). 

Bagnold (1939) observed experimentally that under fixed wave conditions (at a given 
point on the wall) the pressure impulse is approximately constant, even though the 
peak pressure changes unpredictably between apparently identical wave impacts. 
Pressure impulse P is defined by 

where t ,  and t ,  are the times immediately before and after impact, respectively. The 
subscript conventions b for ‘before impact’ and a for ‘after impact’ are used 
throughout. Even though the peak pressure varies unpredictably, the pressure impulse 
is relatively well behaved. This is partly confirmed by the measurements of Richert 
(1968), and suggests that the pressure impulse is a better physical quantity to model 
than the peak pressure. 

Lamb (1932, 0 11) shows how the velocity potential of an irrotational flow can be 
interpreted as that pressure impulse which can instantaneously accelerate the fluid 
from rest to its present velocity. Pressure impulse is used to model the flows 
instantaneously induced from rest by, for example, the impact of a rigid body hitting 
the surface of still water. See Wagner (1932), Batchelor (1973, §6.10), the general 
treatment of Sedov (1965), and the review of Korobkin & Pukhnachov (1988). Cointe 
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FIGURE 1.  Sketch of the pressure as a function of time at a point on a sea wall 
undergoing wave impact. 

(1989), Cointe & Armand (1987), and Howison et al. (1991) all solve problems of rigid- 
body impact on still water. Their outer solutions for the velocity potential of the 
induced irrotational flow can be interpreted as fields of pressure impulse. 

When a body strikes a fluid at rest a transient pressure field occurs throughout the 
field. The pressure rises and falls in the short time, At, and the gradient of the pressure 
field accelerates the fluid into motion. In this paper we turn this idea around, and 
consider the pressure impulse in a moving liquid domain which collides with a fixed 
structure. The impulsive pressure gradients accelerate the fluid from an incident 
velocity to a new velocity field. Although liquid-on-solid impacts have been much 
studied for high-speed collision, and liquid-liquid impacts are briefly discussed in 
Howison et al. (1991) there seems to be little previous investigation of the simple 
pressure-impulse model in this context, except for an exercise in Milne-Thomson 
(1 968). 

In this paper the impact speed is taken to be much less than the speed of sound in 
the liquid, so that incompressible fluid is a reasonable model and impulsive pressures 
in the domain of interest occur within the same short time interval, [to, t,]. This, and 
the neglect of many details of motion in the neighbourhood of the impact zone, are the 
major assumptions of pressure-impulse theory. They are discussed further in the 
concluding section. 

The mathematical formulation of the problem is briefly presented in $2. The major 
part of the paper is the presentation of some solutions for simple geometries in $3. The 
sudden change in velocity that occurs on impact is next presented together with some 
comments on splashing. Energy is lost in the pressure impulse model, as demonstrated 
in $5, and this is discussed within the context of waves meeting a wall. 

2. Mathematical formulation 
The concept of pressure impulse, or impulsive pressure, is well-known (Lamb 1932, 

# 11 , Batchelor 1967, $6.10). The change in velocity during the impulsive event is 
supposed to take place over such a short time that the nonlinear convective terms in 
the equation of motion are negligible compared with the time derivative, giving 

au 1 _ -  - --vp. 
at P 
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Viscosity and surface tension are negligible in all applications we have considered. 
Although compressibility may be important for a brief moment, even for impact 
velocities well below the speed of sound, it is neglected here. It is easy to see that next 
to the impact zone there is a small region where nonlinear terms are not negligible, e.g. 
see Howison et al.’s (1991) treatment of water entry; however, the pressure-impulse 
approach gives a good ‘outer’ approximation (see also the discussion of energy loss in 
0 5)- 

We integrate equation (2.1) with respect to time through the impac,t interval, [ t b ,  fa], 
and use definition (1.1) for the pressure impulse P, to arrive at 

1 

P 
U a - U ,  = --VP, 

where V-u,  and V - u ,  both vanish. Taking the divergence of (2.2), we find that the 
pressure impulse satisfies Laplace’s equation 

Consideration of the curl of (2.1) and (2.2) shows that the pressure impulse does not 
change the vorticity of the flow. 

The boundary conditions to be applied to Laplace’s equation are readily found to 
be as follows. 

(a)  At a free surface, where the pressure is constant and taken to be a zero reference 
pressure: P = 0. 

(b) At a stationary rigid boundary, in contact with the liquid before and after the 
impulse, the normal velocity is unchanged so that 

V2P = 0. (2.3) 

a P p n  = 0. (2.4) 
(c) Where liquid meets a solid boundary during impact the change in normal 

velocity gives the normal derivative of pressure impulse. For the simplest case of a 
stationary rigid boundary 

I ap 
p an ’ 

unb = -- 

where u,, is the normal component of the approach velocity of the liquid. 
Conditions (b) and (c) are easily altered to account for moving rigid boundaries 

including the case where the impact causes a rigid body to move (e.g. see Cooker & 
Peregrine 1992). 

( d )  When liquid meets liquid two boundary conditions are needed on the common 
interface. One is that the pressure impulse is continuous : 

Consideration of the change in velocity on each side of the interface gives 
PI = Pz. (2.6) 

1 ap, 1 aPz 
P1 an Pz an ’ 

U l n b - U Z n b  = ----- 

where subscript n denotes the component normal to the boundary and subscript b 
denotes the liquid velocities immediately before the impact. 

In all the above cases, an inelastic impact is assumed. 

3. Solutions for waves and jets in simple geometries 

particular the following. 
A number of simple, idealized examples of liquid impact are given below. Note in 
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FIGURE 2. (a) Sketch of a coastal wave impact. (b) The impact of a rectangle of fluid on a vertical wall 
at x = 0. The impact zone stretches from the top free surface, part-way down the wall, occupying a 
fraction p of water height, H .  The back of the wave at x = b is a free surface with P = 0. 

(i) Pressure-impulse fields close to the impact region depend on the distribution of 
the normal component of impact velocity over that region. Here it is taken to be 
uniform for simplicity but there is no difficulty in choosing other velocity distributions 
in the examples that follow. 

(ii) Any contour C of pressure impulse can be used as an alternative free boundary, 
since subtraction of the value of pressure impulse on C from P ( x , y ,  t )  gives another 
pressure impulse field which is zero on C. 

(iii) As is indicated by pressure-impulse fields and comment (ii) above, the pressure 
impulse acting on the rigid boundaries is only weakly dependent on the shape of the 
free boundary. This is also illustrated in the results for rectangular impacting shapes, 
and implies that simplified representations of the impacting liquid’s shape can be of 
value in practical circumstances. 

3.1. Impact of an idealized wave on a vertical wall 
A realistic wave impact is sketched in figure 2(a). Figure 2(b)  shows a two-dimensional 
boundary-value problem for an idealized water wave meeting a rigid vertical wall. The 
fluid domain has been idealized to a rectangle with free surfaces at the upper and right- 
hand edges ( y  = 0, x = b). Fluid stays in contact with the bed and the lower part of the 
wall, and the wave face impacts on the upper part of the wall. The distance from the 
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FIGURE 3. Contours of pressure impulse for the arrangement in figure 2(b) for H = p = CJ, = 1, p = 
0.5. Contour interval = O.Ol@U,H). (a) b = 0.5; the maximum value of P is 0.248@CJ0H), and 
occurs at the wall, x = 0. (b) b = 00;  the maximum pressure impulse is 0.293(pU0H). 

bed to the wave crest is H, and the wave strikes a fraction ,u of this height. We model 
the normal component of impact velocity as a constant: U, > 0 in the impact zone 
x = 0, - p H  < y < 0, though a general distribution of impact speed unb(y) can be 
easily accounted for by the following method. The boundary conditions are as shown 
in figure 2(b). The problem is solved using separation of variables in Laplace’s 
equation, and Fourier analysis, giving 
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FIGURE 4. The pressure impulse at the wall as a function of position y / H  below the surface for 
the configuration of figure 2(b); ,u = 0.5. Each curve is for a different value of domain length, b. 

for - H < y < 0,  and 0 < x < b where A, = (n -;) n, and the constants a, are 
cos PA, - 1 

A: 
a,, = 2U0 

For b % H, the solution can also be expressed as an integral from which some explicit 
results may be obtained (see the Appendix, equation (A 6)) but the series in (3.1) is 
generally more convenient for computing P. However, if the velocity change is required 
care should be taken in regions where the Fourier series converges very slowly. 

The pressure-impulse distribution for two contrasting examples, each with ,u = 0.5, 
are shown in figures 3 (a) and 3 (6). Although the second example has a much smaller 
volume of liquid the pressure-impulse distributions near the impact wall are very 
similar: the difference in pressure impulse is only 0.06 pUo H to 0.08 pU, H smaller. The 
effect of reducing the rectangle size further is shown in figure 4, where plots of pressure 
impulse down the impact wall are shown for various b / H .  Except for relatively thin 
layers of liquid, b / H  < 0.25, the profiles of pressure impulse are similar, showing 
significant values right down to the bed. 

For modelling water waves values of b / H  2 1 are probably more appropriate, and 
these are well represented by the case b / H +  00. The pressure-impulse profiles on the 
impact wall for a range of values of ,u are shown in figure 5 for b / H  = co . All examples 
show significant values of pressure impulse below the impact zone. The case ,u = 1 can, 
by reflection in the bed, be taken to represent the pressure impulse due to impact by 
a two-dimensional jet with a blunt front face. The maximum value of P in this case is 
0.742 p U, H. 

Figure 6 shows the total impulse on the wall as a function of ,u for various values of 
b. The solution curve for b = 1 is a fair approximation of that for the semi-infinite 
rectangle (b = 00). This implies that the momentum lost from a wave during impact 
comes from that part of the liquid domain which is near the wall. Far from the wall 
little of the horizontal component of momentum is lost, and the geometry of the fluid 
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FIGURE 5. As figure 4: pressure impulses at the wall for b = co. 

Each curve is for a different value of p. 
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Fraction of wall in impact, p 

FIGURE 6. The total impulse as a function of p, for the configuration of figure 2(b). Each curve is 
for a different value of the domain length, b. 

domain more than a distance H from the wall has little effect on the total impulse on 
the wall. We make this idea more precise by introducing the momentum length, L,, 
defined by 

1 m  
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For the open-backed rectangle of figure 2(b)  

1-cospA, 
L m = 2 H x  tanh (A, b / H ) .  

n=l  
( 3 . 3 )  

As the width of fluid b / H  tends to zero the momentum length is asymptotically equal 
to b.  The maximum value of L,  is 0 .5428  for ,u = 1 and b / H  = 03. 

3.2. Impact of deep water waves 
For waves which occupy a quarter-space, in deep water, we have b = 00, and H = 00, 

and a Fourier series approach is inappropriate. Roberts (1987) has solved the almost 
identical boundary-value problem for the impulsive motion of a vertical wavemaker. 
Let the impact zone have height d, let z = x +  iy describe position in the complex plane 
and let the complex function 9(z) be such that Re(9) = P, then 

and so 

(3-4) PUO P = - Im- [(z + id) log (z + id) + (z- id) log (z-id) - 2z logz]. 
?t 

On the wall z = iy and the pressure-impulse distribution is 

P(0,y) = -$? [ylogll -d2/y21+dlogl(d+y)/(d-y)J1. 

At great depth the impulse at the wall is asymptotically 

P(0,y) - -pUod2/(xy) as y+-00. 

3.3. Impact in a container 
Somewhat higher pressure impulses than those of $3.1  are found in confined spaces. If 
x = b is a stationary rigid surface, corresponding to wave impact on the inside of an 
open-topped tank, the series solution is now 

The corresponding momentum length is 

coth [A, b / H ] .  
l-cos,uA, 

L m = 2 H Z  
n-1 4: (3.7) 

Figure 7 shows the pressure-impulse distribution, at x = 0, for several values of b.  Note 
that the maximum value of P increases as the tank length is reduced. This shows that 
waves confined in containers can exert much greater impact pressures than when the 
waves are unconfined. This is apparent in the momentum length given by (3.7), which 
is greater than that for an open-backed wave (equation (3.3)). The distribution of 
pressure impulse in the fluid is shown in figure 8 for p = 0.5, b = 1, enabling 
comparison with figure 3(b).  

In yet more confined spaces, such as in a wave-cut notch in a cliff, or in a deep 
narrow masonry joint, we may expect yet higher pressure impulses. However, the role 
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FIGURE 7 .  The pressure impulse at the wall for wave impact within a container; p = 0.5. Note that the 
maximum impulse increases rapidly as b decreases, showing that the more confined the container, the 
greater the impulse on the wall. 
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FIGURE 8. Contours of pressure impulse for wave impact within a container. H = p = U, = 1, p = 0.5. 
Contour interval = 0.01. The maximum value of P is 0.367pU0H, which is 50% greater than in 
figure 3(u). 



Pressure-impulse theory for liquid impact problems 203 

FIGURE 9. The boundary-value problem for the impact of a wave, with a 45" triangular section, 
on a vertical wall. p is the fraction of the wall struck. 

0 0.25 0.50 0.75 1.00 

xlH 

FIGURE 10. Pressure impulse contours for p = 0.5, H = p = U, = 1, for the configuration of 
figure 9. The maximum of P is 0.1 94@U0 H). 

of air trapped in such spaces by impacting water may well lessen the pressure predicted 
by our simple analysis. On the other hand a liquid-filled crack may convey high 
impulsive pressures deep inside a structure. 

3.4. A triangular wave 
An isosceles triangular wave as sketched in figure 9 shows similar results. The meaning 
of the terms impact speed, U,, and the impact zone height pH are the same as 
for the rectangles discussed above. To solve Laplace's equation with the given 
boundary conditions it is easier to consider the equivalent problem in a square with 
antisymmetry about its diagonal (this ensures that P = 0 on the free surface). The 
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FIGURE 1 1. The momentum length as a function of p for a semi-infinite rectangular wave and for a 
triangular wave. Although the triangle is much smaller it exerts about half the pressure impulse of 
the semi-infinite wave except when ,u is small. 

solution is not as straightforward as for the rectangular wave, but is easily put in a 
similar form by first introducing quadratic terms, giving 

p(x7y;p) = $[(1 +y/H)2-(1 -x/H)'] 
PUOH 

1 +y/H)-cos-coshnn(1 nxY -x/H) . (3.8) 
H 

Figure 10 shows the contours of pressure impulse in the triangle for ,u = 0.5. The total 

I =  p U , P  &-T C ?sinnnp 
impulse on the wall is 

(3.9) 1 [ 2 " 1  n-1" 

which reduces to an Euler polynomial (Jolley 1961, series no 525): 
I = +uoH2py1 -&A). (3.10) 

The maximum value of the impulse is +pU,I-P, which occurs when p = 1. The 
momentum length, L,, of the triangle is 

L, = iHp( 1 - b). (3.1 1) 
The function L,(p) is shown in figure 11 which permits comparison with the values for 
the semi-infinite rectangular wave. The triangle is of only finite extent but it exerts 
about one half of the impulse of the bigger wave (except when p is small). From 
equation (3.11) the momentum length is at most one third of H. 

3.5. An axisymmetric jet-like impact 
A blunt circular cylindrical jet, radius a, of finite length, d, impacting on a rigid plane 
with uniform velocity U, is modelled as a semi-infinite rectilinear circular cylinder 0 < 
r < a, 0 < z < d. The pressure-impulse problem has the Fourier-Bessel series solution 

2pU0 J,(k, r) sinh [k,(d- z)] 
k?, aJ,(k, a) cosh k, d P(r, 4 = x 

n-l 
(3.12) 

in which k, a = j , ,  , the nth zero of the zeroth-order Bessel function J,. 
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FIGURE 12. Impact of a two-dimensional jet on a lower half-plane of the same fluid. U,, = p = 1 

The pressure-impulse maximum lies at r = 0, z = 0 and has the value, when d = GO, 

m 3 

(3.13) 

which is approximately 0.535pU0a. The impact produces an impulse, I w 0.323pU0 na3, 
on the plane z = 0, giving a momentum length of L, w 0 . 3 2 3 ~ .  In view of this fact, we 
may expect this solution to be a fair approximation for other (axisymmetric) regions 
of fluid which are of finite height d, where d % 0 . 3 2 ~ .  

3.6. The impact of a water sheet on still water 
Figure 12 shows the pressure-impulse problem for the impact of a rectangular sheet of 
half-width L, meeting a half-plane of fluid at rest, with a closing speed U,. Boundary 
conditions are shown and correspond to those in (2.6) and (2.7). The two fluids have 
the same density. In the following, subscripts 1 and 2 refer to the sheet (region R,) and 
to the target liquid (region R,) respectively. This mixed boundary-value problem is 
awkward in that P is unknown and the normal derivative of P is discontinuous at the 
impact zone. However, this particular problem can be solved by first defining in the 
region y < 0 the harmonic function 

F(X,Y) = P,(X,Y)--PUoY. (3.14) 

At the impact zone the boundary conditions become PI = F, and i3Pl/i3y = aF/i3yY. Since 
4 and F are harmonic we can infer that all the partial derivatives of Pl equal the 
corresponding derivatives of F in the impact zone. Therefore F is a smooth 
continuation of PI into the lower half-plane. So we need not distinguish between the 
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FIGURE 13. (a) The uniform steady flow past a wall containing a slot. The streamlines are the 
contours of F(x,y). F = P, in the jet and F = P,-pU,,y in the lower half-plane. (b) The contours in 
the jet are of 4. The dark and light bands in the lower half-plane are contours of P2. The contour 
interval is 0.0267(pU0L). The maximum pressure impulse is 0.427@U0L), at the centre of the impact 
zone. 
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two functions, and we denote them by F(x, y), a continuously differentiable function in 
R, U R,. The impact zone need no longer be treated as a boundary, because on U, F 
is continuous with continuous first and second derivatives there. On the free surface 
F = 0, and at infinity we have the conditions 

F -  -PUoY as y+-co, and F+O as y++co. 

If we temporarily think of F as a stream function then the boundary-value problem 
is the same as that for the irrotational flow parallel to a wall which contains a semi- 
infinite slot in the region { - L < x < L, y 2 O}. The streamlines of such a flow are the 
contours of F. This latter problem is solved in a conventional way by using a conformal 
map of a uniform horizontal flow in the lower half of a complex w-plane. By 
application of the Schwartz-Christoffel theorem, the mapping from the w to the 
z-plane is 

1 +iw+i(w2- 1)l/, 
1 - iw - i(w2 - 1)ll2 (wz- 1)1/2+ilog (3.15) 

Let the real function G(x, y )  denote a harmonic complement of F(x, y). We define the 
analytic function of position @ = G+iF. The uniform flow, given by the complex 
potential @(w) = b U o  wx, gives w = 2@/(xpU,,) and when substituted into (3.15) 
gives z(@). Now by holding F fixed, and varying G, (3.15) with z = z(@) becomes a 
parametric representation for the contours of F, in the z-plane. This expression is ideal 
for drawing contours: see figure 13(a). In the jet, F = PI, so the contours of pressure 
impulse in the jet are the same as those drawn for F, but in y < 0 we must add the 
function pU,y to F. This is done graphically in figure 13(b) by overlaying the lower 
half-plane of figure 13(a) with the straight contours of pUoy.  The resultant Moirt 
pattern of intersections gives the contours of pressure impulse. The maximum pressure 
impulse is 0.247pU0 L. This should be compared with 0.742pU0 L for jet impact on a 
rigid surface. 

4. The velocity field and the splash 
We now look at the velocity field after impact, u,(x). For example consider the semi- 

infinite wave discussed in $3.1. From equations (2.2) and (3.1) and with b = co, the 
vertical component of velocity after impact is 

cospA,-l 
%(X, r) = m, Y )  + uo c cos (A, y / H )  exp ( - A ,  x / H ) .  (4.1) 

The velocity components are harmonic, so each takes its maximum value on the 
domain boundary. The most interesting velocity is at the free surface, and figure 14 
shows the change in the vertical component as a function of distance from the wall. In 
the Appendix we show that near the origin u,(x, 0) - - (2U0/a) log ( x / H )  as x tends to 
0. There is no singularity if the impact speed normal to the wall is chosen to decrease 
to 0 as y + 0, or if the wall slopes backward from the free surface. See Okamura (1993) 
or consider the solution obtained by choosing any other pressure-impulse contour to 
represent the free surface. The high, or singular, velocity change at the boundary may 
give an indication of the strength of any splash. 

The splash on impact of a liquid on a solid follows the rigid boundary whilst it is 
concave and may, or may not, follow a convex boundary. Despite some literature 

n=l A n  
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FIGURE 14. The change in the vertical velocity component at the free surface of a semi-infinite 
rectangular wave for several values of p The top of the wave is in uniform horizontal translation 
before impact so the curves indicate the free-surface shape soon after impact. The velocity is singular 
at x = 0 (see the Appendix). 

I 
I I 

FIGURE 15. A simplified shape for the boundary of two impacting liquid bodies: two wedges with 
angles totalling more than 180" meeting on a common side. 

searching we have failed to learn more about the convex rigid boundary than in 
Worthington's (1908) experiments which show dependence on both boundary 
roughness and splash velocity. At impact of two liquid regions there is no such obvious 
direction for the splash to go, and we here look at the information we can glean from 
the pressure-impulse model. This can only be expected to give the initial direction; 
more detailed knowledge is required for the evolution of the splash, e.g. see the thin- 
layer model of Peregrine (1981). 

The example of $3.6 is such a liquid-liquid impact. The velocities at the edge of the 
impact area indicate that the initial splash direction bisects the angle between the two 
impacting surfaces. The device used to solve that problem can also be used to learn 
about the pressure impulse near the corner of two impacting free surfaces as shown in 
figure 15. The form of pressure impulse at impact near the corner can be found. There 
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is a singularity in gradient at the corner dominating the velocity field, provided the 
included angle in the liquid is greater than R. The direction of the gradient at the comer 
shows that the likely initial direction of splash is again along the bisector of the two 
free surfaces. 

5. Energy dissipation 
For the general pressure-impulse problem we show that the total kinetic energy 

decreases during impact. The change in gravitational potential energy is negligible 
because we suppose that the fluid does not move significantly during the impact. 

Let V be the region occupied by the fluid at time t,; then the impact brings about 
a change, AE,, of kinetic energy given by 

AEK = (EK)b-(EK)a = $(U;-U:)  dV. (5.1) J-" 
From (2.2) we have u, = ub-VP/p. Also P is harmonic, so we may express the 
integrand in (5.1) as a divergence: 

Suppose the term between braces in (5.2) satisfies the following two conditions: (i) it 
has continuous first derivatives in V,  and (ii) it tends to zero at infinity when V is an 
infinite domain. Then we can use the divergence theorem to reduce the integration to 
the boundary aV of V to obtain 

where n is the outward unit normal on a V  and dS is an element of surface area of aV. 
NOW U,b = ub'n, SO that 

In (5.3) a V  has been re-expressed as the union of three disjoint sets: the free surface aF, 
the rigid boundary at which fluid stays in contact aB, and the impact zone aZ. 
On aF, P = 0; on aB both u,, and a P p n  vanish; and on aI we have a P p n  = pun,. 
Also we suppose that u,, is smooth enough to satisfy condition (i) above. Hence (5.3) 
simplifies to 

(5.4) 
1 

AE, = 2 PUnb dS. 

For example, the kinetic energy loss per unit width of wall, for the semi-infinite 
rectangular wave discussed in $3.1, is 

(5 .5 )  

As a function of p, AEK has a maximum value, when p = 1, of 0.271pIPu2,. This loss 
of energy on impact appears to have been discussed little before. It is noted by Zhang, 
Duncan & Chahine (1993) in their numerical modelling of jet impact in a collapsing 

" 4  
AEK = p I P q  C sin4 (&An). 

n-1 An 
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bubble, and is not surprising when the corresponding inelastic impact of a particle is 
considered. However, it is not immediately clear where the lost energy goes. Amongst 
neglected effects, compressibility comes to mind, but for low subsonic impacts the 
amount of energy available is very much greater than the sound waves ordinarily 
perceived. 

Comparisons with cases like wedge entry (Howison et al. 1991) and the impact-like 
motions that can occur when waves meet walls (‘flip-through* described in Cooker & 
Peregrine 1990a, b, 1995) are helpful. In these cases, there are ‘outer’ pressure fields 
corresponding to the pressure-impulse fields here, but the fluid flow is entirely 
irrotational and energy preserving. Energy is concentrated in the impact region 
forming narrow high-speed jets which we call splash. Similar high-speed jets are 
brought about by wavemakers moving into water initially at rest, such as the case of 
constant acceleration studied by King & Needham (1994). 

Pressure-impulse theory does not pretend to describe the ‘inner’ region where the 
splash forms. It is tempting to equate the splash with the logarithmic singularity of the 
free surface velocity in equation (4.1) : however, as noted, there is no singularity for a 
slightly different impact where energy loss still occurs. In the impact region, where 
neglected nonlinear terms are important and fluid displacements during impact are not 
small, this ‘lost’ energy accumulates and is associated with splash. It may be possible 
to extend the pressure-impulse theory to obtain measures of the width and velocity of 
the splash-forming jet, but we have yet to succeed. Detailed computations of this area 
are presented in work in the course of preparation. 

6. Conclusion 
The pressure-impulse approximation is used here to illustrate features of the pressure 

field due to wave impact on solid structures and related topics. By choosing relatively 
simple geometric shapes several features are demonstrated. In particular, the pressure- 
impulse field is insensitive to variations of the wave shape at distances greater than half 
the water depth from the impact region. This is useful for applications since it indicates 
that as long as the basic properties of the wave near impact can be estimated, most 
other details of wave shape are unimportant. The utility of the pressure-impulse 
approach is demonstrated in Cooker & Peregrine’s (1992) discussion of the impulse on 
a body near the impact zone, where it is shown that the impulsive pressure gradient can 
be an important factor in moving armour units near a wall. Chan (1994) makes a 
comparison with experiments. 

Where the impact occurs in a confined space the pressure impulse is increased. This 
increase has not been reported before, and merits further study, in application to the 
sloshing of liquids in containers and to the enhancement of pressures by cracks. 
Further work (Topliss 1994) reinforces the view that this increase can be significant. 

Pressure-impulse calculations only give an integrated view of the pressure field. 
There is the obvious integration in time which occurs in definition (1.1) and the less 
easily defined approximation to the details of impact in the impact zone. Both of these 
should be fully appreciated if the most judicious use is to be made of pressure-impulse 
solutions. 

The time integration of pressure, which gives the pressure impulse, is over the 
duration of a sharp pressure peak. Thus it can be reasonably estimated as if the time 
variation of the pressure has a sharp triangular peak of width At* an estimate of the 
peak pressure field is 

PpLW = 2P(x)/At. (6.1) 
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As we have already indicated, there are much wider variations in ppk than in P, which 
accords with a variation in At which is confirmed by experimental measurements. In 
practice Ar depends on details of the strongly nonlinear flow near impact and on any 
compressibility effects. Detailed numerical computations of flip through (Cooker & 
Peregrine 1990a and subsequent work) show a wide variation of timescales for 
nonlinear pressure peaks. Although there is no apparent lower limit of At, shorter times 
are clearly associated with smaller regions of 'impact' pressures. 

Compressibility seems to be important in wave impacts only when air is trapped in 
the water. This air can be trapped as air pockets, or as dispersed bubbles. In either case 
free oscillation periods depend mainly on the volume of air trapped per unit length of 
the wall and the frequency of free oscillations gives a fair estimate of l/Ar. See Hattori, 
Arami & Yui (1994) for experiments, Peregrine (1994) for a discussion of dimensional 
and qualitative aspects and Topliss (1994) for further quantitative details. Useful 
guidelines for estimating At when there is trapped air should be obtainable from 
further experimental and theoretical analyses. 

The most interesting result about the neglected details in the impact zone obtainable 
from a pressure-impulse calculation is the apparent loss of energy presented in 5 5 .  For 
the case of a rigid body impacting liquid Korobkin (1994a, b) shows that half the 
energy goes into the splash and a quarter into compression. In the cases considered 
here, much of the energy must clearly go to the small-scale motion, but in a manner 
which probably depends strongly on the presence or absence of trapped air. The flip- 
through computations of Cooker & Peregrine (1995) are for incompressible irrotational 
flow, so no energy is lost. Thus the energy 'lost' in the pressure-impulse approximation 
must all appear in the jet going up the wall. 

Financial support from the UK Science and Engineering Research Council research 
grants GR/F 28298 and GR/G 21032, and from the Commission of the European 
Communities, Directorate General for Science, Research and Development under 
MAST contract MAS2-CT92-0047, Monolithic Coastal Structures, is gratefully 
acknowledged. 

Appendix. The pressure impulse for a semi-infinite rectangular wave 
expressed as an integral 

the series are re-written as complex exponentials : 
In (3.1) let b = 00, X = --x/H, Y = y / H ,  U, = p = 1. The sine and cosine terms of 

where z1 = X + i ( Y + p ) ,  z2 = X+i(Y-p), z,  = X + i Y ,  where * denotes complex 
conjugate, and An = (n -;) n. We split (A 1) into the sum of six separate series, each of 
the form 

where z is any element of the set {q, z:, z2, z:, zgr z:}. Now Re(z) < 0. So we can 
differentiate the uniformly convergent series (A 2) twice with respect to z, giving a 
geometric series, which can be summed exactly to give f"(z) = -:cosech(ixz). Two 
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integrations give us an expression for flz) and this process leads to an integral 
representation of the summations in (A 1): 

log {cosech (ixz) + coth (;xz)} dz, (A 3) 

and we define the analytic function 

F(z) = Az + ip) +f(z - ip) - 2f(z), 

where z = X+iY. A restatement of (A 1) is now 

P = Im {F(X+ i Y)}. 

The integral in definition (A 3) is indefinite, but there is no ambiguity in the subsequent 
definition of F (A 4), because the integration constant in (A 3) is self-cancelling in 
(A 4). At the wall, X = 0, (A 5) is 

P(0, Y;p) = Im- A 1: + log (cosech ;xis + coth ;xis) ids, 

where s is real. This can be reduced to the following real integral: 

P(O, Y; p) = Jy + 1: In ltan ins1 d ~ .  (A 6)  

The maximum value of P at the wall as a function of Y is given by aP/aY = 0, i.e. 

log I tanin( Y+p) tanin( Y - p )  1-2 log I tanixY I = 0. 

After some manipulation the pressure-impulse maximum is found to be at Y = Y,,, 
where 

1 - (1 - tan4 + ~ p ) ' / ~  1'2 tan ix Y,,, = - { } 9 PE(O,11. tan2 ixp 

From (A 7) we see that as p+O, Y,,, - - p / d 2 .  In fact this asymptotic relation is 
adequate for p < 0.5. 

The singularity in the vertical velocity component u, at x = 0, y = 0 is found as 
follows. Let z = X+ i Y, then from (A 5) 

U, = --aP/a Y = - Re {dF/dz}. 

From (A 3) and (A 5), on the free surface at Y = 0 

=-!log[{ cosh2axX } sinh;x(X+ip) sinhix(X-ip) 
dz y-0 sinh f x X  cosh2 f x ( X +  ip) cosh2 f n (X-  ip) 

Hence 
1 16 tan2 (axp)} as X+O. 

u, N -log{ x R 2 X  

So we have the asymptotic result v,  - - (2/7t) log X as X+ 0. Note that in dimensional 
units this result is u, - - (2/x) Uo log [xxcot @x/4)/(4H)] as x / H +  0. 
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